Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 52(1): 68-80, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35997987

ABSTRACT

Climate change is challenging conservation strategies for protected areas. To summarise current guidance, we systematically compiled recommendations from reviews of scientific literature (74 reviews fitting inclusion criteria) about how to adapt conservation strategies in the face of climate change. We focussed on strategies for designation and management of protected areas in terrestrial landscapes, in boreal and temperate regions. Most recommendations belonged to one of five dominating categories: (i) Ensure sufficient connectivity; (ii) Protect climate refugia; (iii) Protect a few large rather than many small areas; (iv) Protect areas predicted to become important for biodiversity in the future; and (v) Complement permanently protected areas with temporary protection. The uncertainties and risks caused by climate change imply that additional conservation efforts are necessary to reach conservation goals. To protect biodiversity in the future, traditional biodiversity conservation strategies should be combined with strategies purposely developed in response to a warming climate.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Biodiversity , Refugium
2.
For Ecol Manage ; 388: 67-78, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28860676

ABSTRACT

In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes. We established 184 plots (mostly 1000 m2) in 14 primary mountain Norway spruce forests in the Western Carpathians. On each plot we surveyed live and dead trees and regeneration, and cored around 25 canopy trees. Disturbance history was reconstructed by examining individual tree growth trends. The study plots were further aggregated into five groups based on disturbance history (severity and timing) to evaluate and explain its influence on forest structure. These ecosystems are characterized by a mixed severity disturbance regime with high spatiotemporal variability in severity and frequency. However, periods of synchrony in disturbance activity were also found. Specifically, a peak of canopy disturbance was found for the mid-19th century across the region (about 60% of trees established), with the most important periods of disturbance in the 1820s and from the 1840s to the 1870s. Current stand size and age structure were strongly influenced by past disturbance activity. In contrast, past disturbances did not have a significant effect on current tree density, the amount of coarse woody debris, and regeneration. High mean densities of regeneration with height >50 cm (about 1400 individuals per ha) were observed. Extensive high severity disturbances have recently affected Central European forests, spurring a discussion about the causes and consequences. We found some evidence that forests in the Western Carpathians were predisposed to recent severe disturbance events as a result of synchronized past disturbance activity, which partly homogenized size and age structure and made recent stands more vulnerable to bark beetle outbreak. Our data suggest that these events are still part of the range of natural variability. The finding that regeneration density and volume of coarse woody debris were not influenced by past disturbance illustrates that vastly different past disturbance histories are not likely to change the future trajectories of these forests. These ecosystems currently have high ecological resilience to disturbance. In conclusion, we suggest that management should recognize disturbances as a natural part of ecosystem dynamics in the mountain forests of Central Europe, account for their stochastic occurrence in management planning, and mimic their patterns to foster biodiversity in forest landscapes.

3.
Front Plant Sci ; 7: 805, 2016.
Article in English | MEDLINE | ID: mdl-27375659

ABSTRACT

Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution-related change in water stress or photosynthetic limitation (since biomass increment did not become more sensitive to drought/precipitation or temperature/cloud cover, respectively). Therefore, we conclude that the direct effect of moderate pollution on stomatal conductance was likely the main driver of the observed physiological changes. This mechanism probably caused weakening of the spruce trees and increased sensitivity to other stressors.

SELECTION OF CITATIONS
SEARCH DETAIL
...